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Abstract 

In the  exploration of the  planets of our  solar  system, 
images  taken  during a  lander’s descent  to  the  surface 
of a planet  provide a critical  link  between  orbital im- 
ages and local rover  images.  The  descent  images  not 
only  pinpoint  the  landing  site in a global coordinate 
frame, but also provides  progressively  higher-resolution 
maps  for  mission  planning.  This  paper  addresses  the 
generation  depth  maps  from  the  descent  images. 

Our approach  has  two  steps,  motion  refinement  and 
depth  recovery. In  motion  refinement, we use  an ini- 
tial  motion  estimate in order  to avoid the  intrinsic 
ambiguity in descending  motions.  The  objective of 
motion  refinement  is  to  adjust  the  motion  parameters 
such  that  the  epipolar  constraints are  valid between  ad- 
jacent  frames.  The  depth  recovery  step  correlates ad- 
jacent  frames  to  match  pixels  for  triangulation.  Due 
to  the  descending  motion,  the  conventional  rectifica- 
t ion process  is replaced b y  a set  of  anti-aliasing im- 
age warpings  corresponding  to a set of virtual parallel 
planes. W e  demonstrate  experimental  results  on  syn- 
thetic  and real descent  images. 

1 Introduction 

Future space missions landing on Mars (and other 
planetary bodies) will include a downward-looking 
camera mounted on the vehicle as  it descends to  the 
surface. The images taken by the camera during the 
descent provides a critical link between orbital images 
and  lander/rover images on the surface of the planet. 
By matching the descent images against orbital im- 
ages, the descent vehicle can localize  itself in global 
coordinates and, therefore, achieve  precision landing. 
Through analysis of the descent images, we can build 
a multi-resolution terrain  map for safe landing, rover 
planning, navigation, and localization. This paper ad- 
dresses the issue of generating multi-resolution terrain 
maps from a sequence of descent images. 

It is well known that, in a descending motion 
against a planar surface, the motion recovery problem 
is ill-posed, since translations parallel to  the surface 

appear similar to  rotations  about axes parallel to  the 
surface. For space missions, it is  likely that  the motion 
will be nearly perpendicular to  the planetary surface. 
Motion  recovery is, therefore, not generally reliable for 
this scenario. However, if  we have another indepen- 
dent means to measure the orientation of the camera, 
we can obtain  stable motion recovery. For planetary 
exploration missions, such measurements can be pro- 
vided by the inertial navigation sensors on the landing 
spacecraft. 

In a previous mission,  which  was unable to return 
data due to loss of the lander,  it was planned that 
the camera would take  an image every time the dis- 
tance to  the ground halved. In  other words, there 
would be roughly a scale factor of two between adja- 
cent frames in the sequence. This  drastic change of 
scale prohibits us from tracking  features  and correlat- 
ing images across many frames. In  fact, we limit our 
correlation and  depth recovery to adjacent frames for 
the reason. 

The descending motion also causes problems in cor- 
relating the images.  Since the epipoles are located 
near the center of the images, it is not practical to 
LLrectify” adjacent frames in the way that tradition 
stereo rectifies  images. Instead, we “rectify” the im- 
ages by considering a set of parallel planar surfaces 
through the terrain. Each surface corresponds to a 
projective warping between the adjacent images. The 
surface that yields the best correlation at each pixel 
yields the depth  estimate for that location. This recti- 
fication not only aligns images according to  the epipo- 
lar lines, but also equalizes the image scales using anti- 
aliased warpings. 

In the next two sections, we explain the motion 
refinement and  depth recovery steps in detail. We 
then discuss our experiments on synthetic  and real de- 
scent images. The  results  demonstrate the various ter- 
rain features that can be recovered.  Near the landing 
site, small obstacles such as rocks and gullies can be 
identified  for planning local rover navigation. Further 
from the landing site, meta-features such as  mountain 
slopes and cliffs are visible  for use in long-range plan- 
ning. 



Figure 1: Descent Motion 

2 Motion  Refinement 

Terrain 

Recovering camera motion from  two or more frames 
is one of the classical problems in computer vision. 
Linear [4] and nonlinear [5] solutions have  been  pro- 
posed. For descent motions (as in Fig. l), generic  mo- 
tion recovery from matched features is  ill-posed  owing 
to a numerical singularity. Since the camera can be 
rigidly attached to  the lander,  and the change in the 
lander orientation can be measured accurately by an 
inertial navigation system onboard, we can eliminate 
the singularity problem by adding a penalty term for 
deviating from the measured orientation.  The follow- 
ing two subsections briefly explain our feature tracking 
and nonlinear optimization for motion refinement. 

2.1 Feature  Tracking 

For each pair of adjacent frames in the sequence, 
we track  features that have been selected in the higher 
resolution frame into  the lower resolution frame. We 
use Forstner's interest  operator [2] to evaluate the 
trackability of the features in the higher resolution 
frame. We select the features with high scores, while 
disallowing features that  are  too close together. See 
Fig 2(a). 

Once the image resolutions have  been  equalized 
(through downsampling or anti-aliasing warping, if 
necessary), feature  tracking can be performed in a 
straightforward  manner. For  every feature in the ref- 
erence image, we search an  area in the  target image  for 
matching. The location of the search area is  derived 
from the initial  estimate of the vehicle  ego-motion and 
its  altitude.  The initial  estimates do not need to be 
precise. The size of the search area is determined 
by  how uncertain the initial estimates  are. Once the 
search area is located, we detect the feature match 

Figure 2: Features  tracked  between  adjacent  frames. (a) 
Features selected to track. (b) Tracked features. 

through normalized correlation. 

2.2 Nonlinear  Motion Estimation 

The objective of motion refinement is to estab- 
lish the precise camera motion between two adjacent 
frames such that epipolar constraints are satisfied to 
subpixel accuracy. It is unrealistic to expect the on- 
board inertial sensors to track the camera  orientation 
with such precision. It is, therefore, crucial to be able 
to refine the motion parameters prior to recovering the 
depth  map. 

The tracked features provide a rich set of obser- 
vations to constrain the camera motion, even though 
the relationship between the locations of the tracked 
features  and the camera motion parameters is  highly 
nonlinear. Let us assume that  the projection matrix 
of the camera is M, the location of feature i at time 
t is [X: ,  qt, ZjIT,  its image location at time t repre- 
sented in homogeneous coordinates is [x: ,  yf , $ I T ,  and 
the camera motion between time t and  time t + 1 is 
composed of a translation T and  rotation R ( 3 x 3  ma- 
trix).  The projection of the feature at time t is, thus: 

and the projection at time (t + 1) is: 

[ . i : : ] = M [ ~ ' : ] = - ( . [ ~ ] + T ) .  .f+1 ,;+I 

(2) 
Therefore, the feature motion in the image is: 



= u  [ $ 1  +v, 
Zf 

where U = MRM-l is a 3x3  matrix  and V = MT 
is a 3-vector. Let [c:,rf] = [zT/zf,yf/zf] denote the 
actual column and row location of feature i in image 
coordinates at time t .  We, then, have the predicted 
feature locations at time t + 1 as 

uoo2: + uo1yf + u0224 + 210 
;;+I = 9 (4) 

u2024 + u21y4 + u22zf + 212 

u102: + U l l Y f  + U12Zf  + 211 
if+l = 7 (5) 

21202: + U 2 l Y f  + 21222; + 212 

where uij and vi are elements of U and V respectively. 
There  are two  ways to optimize the camera motions 

in the above equations. One is to reduce the equations 
into one by eliminating zf. We  would then minimize 
the summed deviation from the equation specifying 
a nonlinear relation between [ci, rf] and [t:", i ; + l ] .  

Though  this  method is concise and simple, it poses a 
problem in the context of least-squares minimization 
in that  the objective function does not have a physical 
meaning. 

The other  approach to refine the motion estimate 
is to augment the parameters with depth estimates 
for each of the features.  There  are two advantages to 
this approach. First,  the objective function becomes 
strictly the distance between the predicted and ob- 
served feature locations. Therefore, it is guaranteed 
to have no bias if the observations contain no bias. In 
addition, in the context of mapping descent images, we 
have a good initial  estimate of the depth value  from 
the spacecraft altimeter.  Incorporating  this informa- 
tion will, thus, improve the optimization in general. 

Let us say that  the depth value of feature i at 
time t is 4 and  the camera is pointing along the z- 
axis, the homogeneous coordinates of the feature  are 
[x: ,  yf,  zfIT = &[ci, ri ,  lit. Therefore, the overall  ob- 
jective function we are minimizing  is: 

N - 1  
((cf+' - + (rf" - i f+1)2)  , (6) 

i=O 

where N is the number of features,  and tf" and 
if+' are nonlinear functions of the camera motion 
and  depth value 4 given  by Eq. (4) and (5). We 
perform nonlinear minimization using the Levenberg- 
Marquardt  algorithm. 

Eq. (6) specifies the objective function for  two ad- 
jacent images. A long sequence of descending  images 
requires a common scale reference  in order to build 

Figure 3: Slicing  Terrain with Parallel Planes 

consistent multi-resolution depth maps. The key to 
achieving this is to track  features over more than two 
images.  From Eq. (3), the  depth value of feature i at 
time t + 1 can be represented as 

Thus, the overall objective function is to minimize the 
sum of Eq. (6) for all adjacent pairs while maintain- 
ing the consistent scale reference  by imposing the con- 
straint  in  Eq. (7) for all  features  tracked over more 
than two frames. 

3 Depth Map Recovery 

The second step of our method generates depth 
maps using correlations between image pairs. In order 
to compute the image correlation efficiently, we need 
to rectify the images in a manner similar to binocular 
stereo. Unfortunately, it is impossible to rectify the 
images along scanlines because the epipolar lines in- 
tersect each other near the center of the images. If we 
resample the images along epipolar lines as in stereo, 
we  will oversample near the image center,  and under- 
sample near the image boundaries. 

In order to avoid this problem, we adopt a slicing 
algorithm to perform the correlation efficiently. The 
main concept is to use a set of virtual  planar surfaces 
slicing through  the  terrain as shown in Figure 3. 

The virtual  planar surfaces are similar, in concept, 
to horopter surfaces [l] in stereo. For every planar 
surface IC, if the terrain surface is exactly the planar 
surface, there exists a projective warping PI, between 
two  images. If we designate the first image 11(z, y) 



and  the second image I z ( z ,  y), then for  every virtual 
planar surface, we can compute a correlation image as 
the sum-of-squared-differences (SSD): 

x+w Y+W 

m=z-W n=y-w 

(8) 
where 2W + 1 is the size of the correlation window and 
Ii(z, y) is a warped version of Iz(z, y): 

I;(z,Y) = I 2  ( pzoz  + PZlY + P 2 2  ' PaoZ + PZlY + P 2 2  > ,  
pooz +Poly + Po2 PlOZ + PllY + P12 

(9) 
where pij  are elements of the 3x3 matrix Pk. Due 
to  the  drastic resolution difference, an anti-aliasing 
resampling such as [3] or a uniform  downsampling 
of I z ( ~ , y )  is applied before the image warping. In 
practice, if the camera heading directions are close to 
be perpendicular to  the ground, a uniform  downsam- 
pling before warping shall suffice. Otherwise, a space- 
variant downsampling is needed to equalize the image 
resolutions. 

The  depth value at each pixel is the  depth of the 
planar surface ZI ,  whose corresponding SSD image 
pixel Ck(z,y) is the smallest: 

where 

Ck(2,Y) I Cj(Z,Y),j = 0,.  . . , M  - 1,  (11) 

and M is the number of planar surfaces. To further re- 
fine the  depth values, the underlying SSD curve can be 
interpolated by a quadratic curve and  the "subpixel" 
depth value can be computed [6] as: 

where 6z is the  depth increment between adjacent pla- 
nar surfaces. 

The projective warping matrix PI, is derived from 
the parameters of the camera motion and  the planar 
surfaces. For an  arbitrary point X in some  reference 
frame, its projection is expressed as x = M(X - C), 
where C is the position of the camera nodal point 
and M is the projection matrix. Note that C and 
M encapsulate the camera motion between the im- 
ages, since they  are represented in a common  reference 
frame. Let C1 and M1 represent the higher camera, 
CZ and Mz represent the lower camera in Fig. 3,  and 
NTX + z k  = 0 represent the set of planar surfaces. 

For any pixel in image 2 (i.e. the lower camera),  its 
location must lie on a 3d ray: 

where c2 and r2 are  the column and row location of 
the pixel and s is a positive scale factor. If the pixel  is 
from a point on the planar surface, then  the following 
constraint must be satisfied: 

Therefore, the scale factor s must be 

We can then re-project the point onto the first image 
using Eq. (13) and (15): 

where P k  is a 3x3 matrix specifying the projective 
warping: 

P k  = Ml(C2 - C1)NTMil - (NTC2 + zk)M1MY1. 

Note that  the  depth recovery is numerically unsta- 
ble near the vicinity of the epipoles, located near the 
center of the image. Pixels near the epipoles usually 
have a small amount of parallax, even with large cam- 
era motions. Mathematically, the SSD curves in those 
areas  are very flat and,  thus,  accurate  depth recovery 
is  difficult. These regions can be easily filtered, if de- 
sired, by imposing a minimum curvature threshold at 
the minima of the SSD curves. 

(17) 

4 Experiments 

Figures 4(a)  and  4(b) show a synthetic set of nested 
descent  images.  For this set of images, the  terrain 
model  is  composed of a slowly-varying terrain sur- 
face and rocks distributed according to a statistical 
model. The height of the camera decreases from ap- 
proximately 25 meters above the ground to about 6 
meters above the ground. The field of  view  of the 
camera is 70 degrees. 



Figure 4: Synthetic descent  images. (a) Image at higher elevation. (b) Image at lower elevation. (c) False-color elevation 
map.  (d) Rendered  terrain  map with image  overlaid. (The rows  have  different  height scales.) 

Figure 4(c) shows the recovered depth maps in 
false-color. The recovered depth maps have root- 
mean-square errors of 4.6cm and 9.7cm,  respectively. 
Note that  the areas close to  the focus-of-expansion (at 
the center of the image) have larger error than  the rest 
of the image, owing to  the geometrical instability at 
the focus-of-expansion. Figure 4(d) shows a visualiza- 
tion of the  depth  maps, with the image draped over 
the  terrain.  In  both image pairs, the general down- 
ward slope of the  terrain from back-to-front and left- 
to-right can be observed. In addition, individual rocks 
can be clearly distinguished, particularly in the lower- 
elevation image pair. 

For these experiments, we generated our initial esti- 
mates of the camera motion by perturbing the actual 
camera values  by a random noise of magnitude two 
degrees. This level of accuracy in the orientation can 
be achieved  by the onboard  inertial navigation system 
during a real landing. The overall quality of the re- 
covered depth  maps is satisfactory for both navigation 
in the vicinity of the landing and long term planning 
to goals far away from the landing. 

A real set of descent images was  collected  in the 
desert area near Silver Lake, California using a heli- 
copter. Figure 5 shows several frames from this se- 
quence. The initial camera motions were estimated 
using control points on the ground. Several of the 
images contain significant lateral motions due to the 
difficulty in maintaining the x-y position of the heli- 
copter during the  data collection. Column (b) of Fig. 5 

shows the false-color depth maps that were  recovered 
from the sequence and column  (c)  shows the image 
draped over the visualized terrain. 

Since these images  were captured under real con- 
ditions using a moving helicopter, the focus-of- 
expansion for  each image pair is not at the center of 
the image (although it is reasonably close in rows 3 
and 6). In rows 1 and 2, the focus-of-expansion can 
be seen above the center of the image, while it is near 
the bottom-right corner in rows 4 and 5. In row 7, 
the focus-of-expansion  is off of the image to  the left. 
The instability can be seen in these locations where 
the rendered map becomes  wavy or choppy. As the 
distance from the focus-of-expansion  becomes large, 
the terrain elevations become more accurate.  In row 
5, the lower elevation image did not completely over- 
lap  the higher elevation image, resulting in the lack 
of height data in the lower-left corner of the result for 
that image pair. 

For the images in this  data  set,  the  terrain slopes 
downward  from  left to right, which can be observed 
in the rendered maps. Some of the interesting  terrain 
features include the bushes visible in row 1 and  the 
channels in  rows  3-7.  Note that  the areas in which the 
helicopter shadow  is present yield good results, despite 
the movement of the shadow. This can be  attributed 
to  the robust methods that we use  for both motion 
estimation and  template matching. Overall, this data 
set indicates that we can compute maps that  are useful 
for  rover navigation over both small and large scales 
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Figure 5: Real descent sequence from a helicopter. (a) Images captured from a helicopter (896x896). (b) False-color 
estimated  terrain  map. (c) Rendered terrain  map with image  overlaid. (The rows have  different height scales.) 



robustly using real descent images. 

5 Summary 

We have presented techniques for extracting  depth 
maps from a sequence of descent images as would be 
acquired by a lander descending to a planetary sur- 
face. The method consists of two primary steps: mo- 
tion estimation and  depth recovery.  Motion estima- 
tion is performed by tracking  features  and minimiz- 
ing a least-squares objective function using nonlinear 
methods. The  depth  map is then recovered  using a 
novel technique where the  terrain is  sliced by virtual 
planes, similar to horopter surfaces in stereo. Each 
plane can be thought of as a vertical disparity. The 
plane yielding the lowest SSD is selected as the depth 
for each pixel and subpixel estimation techniques are 
used to improve the estimate. We have  performed 
experiments with this method on synthetic  and real 
image sequences maps with sufficient accuracy for per- 
forming rover navigation and planning. 
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